Colthup, N. B., Daly, L. H. \& Wiberley, S. E. (1964). Introduction to Infrared and Raman Spectroscopy. New York and London: Academic Press.
Coppens, P. \& Vos, A. (1971). Acta Cryst. B27, 146-158.
Cutmore, E. A. \& Hallam, H. E. (1969). Spectrochim. Acta, 25A, 1767-1785.
Hallam, H. E. (1969). Spectrochim. Acta, 25A, 1785-1789.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Kedzia, B. B., Armendarez, P. X. \& Nakamoto, K. (1968) J. Inorg. Nucl. Chem. 30, 849-860.

Mazzi, F. (1953). R. C. Soc. Mineral. Ital. 9, 148-172.
Mclellan, A. W. \& Melson, G. A. (1967). J. Chem. Soc. (A), pp. 137-142.
Nakamoto, K., Margoshes, M. \& Rundle, R. E. (1955). J. Amer. Chem. Soc. 77, 6480-6486.

Nakamoto, K. (1963). Infrared Spectra of Inorganic and Coordination Compounds. London: Wiley.
Parthasarathy, R., Sime, J. G. \& Speakman, J. C. (1969). Acta Cryst. B 25, 1201-1202.
Sacconi, L., Sabatini, A. \& Gans, P. (1964). J. Inorg. Chem. 3, 1772-1774.
Stals, J. (1970). Rev. Pure Appl. Chem. 20, 1-22.
Sugihara, A., Ashida, T., Sasada, Y. \& Kakudo, M. (1968). Acta Cryst. B24, 203-211.

TAYLOR, R. M. (1972). Z. anorg. allgem. Chem. 390, 85-96.
Tewari, R. \& Strivastava, R. C. (1971). Acta Cryst. B27, 1644-1649.
Verschoor, G. C. \& Keulen, E. (1971). Acta Cryst. B27, 134-145.
Weidermann, G. (1848). Liebigs Ann. 68, 324-326.
Wöhler, F. (1847). Liebigs Ann. 62, 241-253.

Acta Cryst. (1973). B29, 286

Hydrogen Bonding in the Crystalline State. Crystal Structure of $\mathrm{MgHAsO}_{4} . \mathbf{7 H}_{2} \mathrm{O}$, Roesslerite*

By G.Ferraris and M. Franchini-Angela
Istituto di Mineralogia e Geochimica dell' Università, Via San Massimo 24, 10123 Torino, Italy

(Received 7 October 1972; accepted 20 October 1972)

Abstract

Roesslerite, magnesium hydrogen arsenate heptahydrate ($\mathrm{MgHAsO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$), crystallizes in the monoclinic system, space group $C 2 / c$. Unit-cell parameters are: $a_{0}=6.6918$ (5), $b_{0}=25.744$ (2), $c_{0}=11.538$ (1) \AA, $\beta=95 \cdot 15(1)^{\circ} ; Z=8$. The crystal structure was refined anisotropically to $R=0.030$, using 2157 non-zero reflexions measured on an automatic three-circle diffractometer ($\mathrm{Cu} K \alpha$ radiation). Corrections for absorption, secondary extinction (including an increase of the mosaicity during the measurements) and anomalous scattering were applied. The hydrogen atoms were located from difference maps and the acidic hydrogen atom appears to be involved in two symmetrical hydrogen bonds. The two crystallographically independent magnesium atoms are coordinated by six water molecules; the seventh water molecule is linked by hydrogen bonds only. No oxygen atoms are shared by coordination polyhedra and the crystal structure can be described in terms of layers parallel to (010) or to (001).

Introduction

Roesslerite, magnesium hydrogen arsenate heptahydrate $\left(\mathrm{MgHAsO}_{4} .7 \mathrm{H}_{2} \mathrm{O}\right)$, is a secondary mineral usually associated with other arsenates (Palache, Berman \& Frondel, 1963) and, according to its known properties, is isostructural with $\mathrm{MgHPO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$, phosphoroesslerite.

An X-ray crystal-structure determination of roesslerite has been carried out as a part of a programme of structural research on hydrogen bonding and on the role of the water molecule in the crystalline state [$c f$. Ferraris \& Franchini-Angela (1972), Chiari \& Ferraris (1971) and references therein]; in particular, acidic arsenates (or phosphates) are often likely to have symmetrical hydrogen bonds [cf. Ferraris, Jones \& Yerkess (1972) and references therein].

[^0]
Preparation and crystal data

Transparent, colourless crystals of $\mathrm{MgHAsO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$, suitable for X -ray study, were grown by the method of Mattrat \& Guérin (1960). Cu K α X-ray diffraction analyses (Weissenberg and single-crystal diffractometry) confirmed the monoclinic symmetry (Palache et al., 1963) and, to a first approximation, the unit-cell parameters reported by Fischer (1964); the crystals are tabular $\{010\}$ and elongated along [100]. The space group $C 2 / c\left(C_{2 h}^{6}\right.$, No. 15) has been chosen on the basis of systematic absences ($C c$ or $C 2 / c$), the absence of a piezoelectric effect,* and the examination of the Harker sections; the successful refinement of the structure confirmed the validity of this choice.

The reciprocal unit-cell parameters were refined by a least-squares procedure using 36θ values greater than 65°, which were measured at room temperature on a single-crystal diffractometer $\left(\lambda \alpha_{1}=1 \cdot 54050, \lambda \alpha_{2}=\right.$

[^1]1.54434 \AA); the following direct unit-cell parameters (standard deviations in parentheses) were obtained:
\[

a_{0}=6.6918(5) \AA \quad $$
\begin{gathered}
b_{0}=25.744(2) \AA \quad c_{0}=11.538(1) \AA \\
\beta=95.15(1)^{\circ} .
\end{gathered}
$$
\]

Table 1 shows data for the X-ray powder spectrum of $\mathrm{MgHAsO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$; the indexing was on the basis of both computed interplanar distances ($d_{\text {calc }}$) and the single-crystal intensities.

Our optical observations are in agreement with those reported by Keller (1971) and confirm that previous optical data (cf. Palache et al., 1963) are erroneous; in particular, roesslerite is biaxial negative. Other physical data are: M.W. 290.23, $V=1979 \cdot 6 \AA^{3}, D_{m}=1 \cdot 943$ (Palache et al., 1963), $D_{c}=1.948 \mathrm{gcm}^{-3}, \quad Z=8$, $F(000)=1184$, linear absorption coefficient for $\mathrm{Cu} K \alpha$ radiation $\mu=62 \mathrm{~cm}^{-1}$.

Intensity measurements

Intensities were measured on a General Electric automatic three-circle diffractometer ($\theta-2 \theta$ scanning, 2° $\min ^{-1}, 0.5^{\circ}$ background on both sides of each peak) from a crystal mounted with its x axis along the instrumental φ axis and coated with a thin plasticizing film to prevent dehydration. Of the 2157 independent reflexions measured, 114 were rejected because they were very weak ($\left|F_{c}\right|<\left|F_{o}\right|$. A standard reflexion (222) was checked every 50 reflexions; its value, on a relative scale, increased from 35400 to 39000 during 94 hours of measurements. This surprising variation, which could be ascribed to an increase in the mosaicity
of the crystal under X-ray exposure, was fitted to an approximately exponential curve; all the reflexions were put on the same relative scale on the basis of this graph. During the final stage of the refinement, a secondary extinction correction was introduced; with a least-squares procedure, we deduced, for the function

$$
I_{c} / I_{o}=k\left(1+g I_{c}\right),
$$

$k=0.931$ and $g=3 \cdot 10^{-6} \mathrm{e}^{-2}$. An absorption correction (transmission factor $0.53-0.81$) was applied using the program GONO9 (Hamilton, 1966). Dimensions of the slightly idealised crystal are: $0.07,0.21$ and 0.61 mm across the opposite faces of $\{010\},\{001\}$ and $\{100\}$ respectively; $\{100\}$ is a rough approximation for an uneven fracture. Atomic scattering factors, with both real and imaginary corrections for anomalous scattering, were a linear interpolation of the values reported for neutral atoms in International Tables for X-ray Crystallography (1962).

Solution and refinement of the structure

The independent As atom was readily located in a three-dimensional Patterson function; a difference synthesis ($R=0.45$) showed all the non-hydrogen atoms except for one oxygen atom which emerged from a subsequent synthesis $(R=0 \cdot 16)$. There are eight formula units in the unit cell and, except for magnesium and acidic hydrogen (see below), all the atoms are in general positions.

After a preliminary isotropic refinement ($R=0.08$), anisotropic vibrational parameters were included and

Table 1. Intensities (on arbitrary scale), observed and calculated interplanar spacings and indices for the reflexions of the X-ray powder spectrum of roesslerite ($\mathrm{Fe} K \alpha, \lambda=1 \cdot 93728 \AA$)

$I_{\text {obs }}$	$d_{\text {ons }}(\AA)$	$d_{\text {calc }}(\AA)$	hkl	$I_{\text {obs }}$	$d_{\text {obs }}(\AA)$	$d_{\text {calc }}(\AA)$	$h k l$
m	12.98	12.87	020	vw	2.457	2-4639/2-4597/2.4497	083/262/134
w	8.55	8.57	021	$v w$	2.412	2.4138/2.4110	173/154
vs	$6 \cdot 44$	6.436	040	vw	2.244	2-2447/2-2445/2.2424	263/224/281
$v w$	$5 \cdot 74$	5.745	002	vw	2.206	2-2082/2.2040	1.11.0/193
m	$5 \cdot 24$	$5 \cdot 247$	022	w	2.157	$2 \cdot 1566$	1.11 .1
w	4.908	4.9194	131	vw	$2 \cdot 125$	$2 \cdot 1303$	312
s	$4 \cdot 659$	$4 \cdot 6620$	131	vw	2.099	2.0990	174
s	4.476	$4 \cdot 4890$	T12	w	2.076	2.0743	$\overline{3} 32$
$m s$	4.275	4-2907/4.2861	060/042	vw	2.046	2.0505	155
ys	4.075	4.0745	150	vw	2.006	2.0061	312
ow	3.751	3.7510	132	$v w$	1.9472	1.9490	333
mw	3.661	$3 \cdot 6713$	023	vw	1.8925	1.8943/1.8896	026/245
w	$3 \cdot 419$	3.4270/3.4132	T13/152	vw	1.8654	$1 \cdot 8653 / 1.8652$	353/1.13.1
w	$3 \cdot 325$	$3 \cdot 3324$	200	vw	1.8422	1-8422/1.8411	136/2.10.3
w	$3 \cdot 281$	$3 \cdot 2915$	043	vw	1.8108	1-8094	333
vw	$3 \cdot 133$	3.1361	171	vw	1.7693	1.771 1/1.7689	T56/2.12.1
vw	3.026	3.0380	221	vw	1.7453	1.7454	$\overline{5} .12 .2$
w	2.993	2.9977	133	$v w$	1.7107	1.7123	392
m	2.857	$2 \cdot 8574$	063	vw	1.6795	1.6821/1.6783	314/176
$m w$	2.795	2.8076/2.0838	082/024	vw	1.6503	1.6502	1.15.1
$m w$	2.706	2.7141/2.7145	222/T14	vw	1.6232	1.6250/1.6204	T17/2.10.4
$m w$	2.621	2.6233	044	vw	1.5793	$1 \cdot 5816 / 1 \cdot 5786$	3.11.1/441
vw	2.571	$2 \cdot 5744$	0.10 .0	vw	$1 \cdot 5490$	1.5494	0.16 .2
w	$2 \cdot 522$	$2 \cdot 5267$	261				

Plus 27 very weak reflexions with the following $d_{\text {obs }}(\AA)$: $1 \cdot 4 \varepsilon 08,1 \cdot 4507,1 \cdot 4320,1 \cdot 4128,1 \cdot 3995,1 \cdot 3865,1 \cdot 3559,1 \cdot 3405,1 \cdot 3129,1 \cdot 3002,1 \cdot 2902,1 \cdot 2770,1 \cdot 2541,1 \cdot 2286$, $1 \cdot 2187,1 \cdot 2017,1 \cdot 1927,1 \cdot 1679,1 \cdot 1568,1 \cdot 1457,1 \cdot 1388,1 \cdot 0957,1 \cdot 0894,1 \cdot 0280,1 \cdot 0207,1 \cdot 0118,1 \cdot 0063$.
the R value fell to 0.05 . At this stage, a three-dimensional difference synthesis showed several maxima of $0 \cdot 4-1 \cdot 0 \mathrm{e} \AA^{-3}$; from these, most of the hydrogen atoms were located with the aid of a calculation of bond distances and angles. After the extinction correction had been applied a new difference synthesis revealed the remaining hydrogen atoms. The eight acidic hydrogen atoms required in a unit cell by the chemical formula appear on two special positions: inversion centre $(0,0,0)$ and twofold axis $\left(0, y, \frac{1}{4}\right)$; thus they imply two 'symmetrical' hydrogen bonds. While the peak at $(0,0,0)$ does not show any anomalies, that at $\left(0, y, \frac{1}{4}\right)$ has the appearance of a broad single-peak with two lobes.

The least-squares refinement, including isotropic hydrogen atoms, was ended when all the shifts were less than the corresponding estimated standard deviations (e.s.d.)* and the R value was 0.030 .

The full-matrix least-squares program of Busing, Martin \& Levy (1962), with minor modifications, was used with the following weighting scheme ($\left|F_{c}\right|$ on absolute scale) in the final cycles:

$$
\begin{array}{lll}
w=\frac{55}{0.01 F_{o}^{2}+0.25} \frac{\left|F_{o}\right|+35}{} & \text { for } & \left|F_{o}\right| \geq 18 \\
w=0.0114\left|F_{o}\right|+0.6 & \text { for } & \left|F_{o}\right|<18
\end{array}
$$

The final weighted R value and the standard error of one observation were 0.036 and 1.61 respectively. Table

[^2] from the authors.

2 shows the fractional coordinates and the $B_{i j}$ coefficients in the expression:

$$
\exp \left(-\frac{1}{4} \sum_{i=1}^{3} \sum_{j=1}^{3} B_{i j} h_{i} h_{j} a_{i}^{*} a_{j}^{*}\right)
$$

together with the e.s.d.'s (in parentheses).

Discussion

The symmetrical hydrogen bonds

Since the two short oxygen-oxygen contacts $\left[\mathrm{O}(2) \cdots \mathrm{O}\left(2^{\mathrm{v}}\right)=2 \cdot 491 \AA\right.$ and $\left.\mathrm{O}(3) \cdots \mathrm{O}\left(3^{\mathrm{ii}}\right)=2 \cdot 539 \AA\right] \dagger$ are across symmetry elements, some type of sharing of the acidic hydrogen atom is necessary; we must therefore be sure about the space group before the chemical sense of the contacts can be discussed. In addition to previous considerations, the consistency of bond lengths and angles (Tables 3, 4 and 5) with those found in similar structures would be surprising if the short $\mathrm{O} \cdots \mathrm{O}$ contacts were merely a spurious consequence of an arbitrary centrosymmetric refinement.

Of course, the centrosymmetry could apply (within experimental error) to the heavy atoms (As, Mg and O) only and the acidic atom could be attached to only one oxygen atom. Such a situation, which could be expected to yield a piezoelectric effect, is however in conflict with correlations between bond lengths and

[^3]Table 2. Fractional atomic coordinates and vibrational parameters $\left(\AA^{2}\right)$ with the significant figures of the estimated standard deviations in parentheses

electrostatic bond strengths p (Baur, 1970).* If H(15) and $\mathrm{H}(16)$ are shared between symmetry-related oxygen atoms, $\mathrm{O}(2)$ and $\mathrm{O}(3)$ (acceptors also of two hydrogen bonds from water molecules) receive $2 \cdot 10$ v.u. compared with 1.76 v.u. of $\mathrm{O}(1)$ and $\mathrm{O}(4)$ (acceptors of three hydrogen bonds from water molecules); such a difference is in agreement with the corresponding As-O lengths which are, respectively, longer [$\mathrm{O}(2)$ and $\mathrm{O}(3)$] and shorter $[O(1)$ and $O(4)]$ than the average As-O value (cf. Ferraris, 1970; Chiari \& Ferraris, 1971; Ferraris \& Abbona, 1972; Kálmán, 1971).

Furthermore, equal (within e.s.d.'s) $\mathrm{As}-\mathrm{O}(2)$ and As- $\mathrm{O}(3)$ lengths involve similar environments for $\mathrm{O}(2)$ and $O(3)$ which are acceptors of two hydrogen bonds from water molecules. We note also that the present hydrogen-bond system of the water molecules is comparable, especially for the anionic oxygens, with that found in similar compounds, i.e. $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ (melanterite) (Baur, 1964) and $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ (epsomite) (Fer-

* The bond strength of a hydrogen bond is divided in the ratio $0 \cdot 83 / 0 \cdot 17 \mathrm{v} . \mathrm{u}$. between the donor and the acceptor atom (cf. Baur, 1970).
raris, Jones \& Yerkess, 1973). The latter, in particular, shows two underbonded anionic oxygens, corresponding to $O(2)$ and $O(3)$ in roesslerite, which accept only two hydrogen bonds (compared with the three bonds received by the other two oxygens).

While the above discussion indicates an equal degree of involvement of $\mathrm{H}(15)$ with $\mathrm{O}(2), \mathrm{O}\left(2^{v}\right)$ and $\mathrm{H}(16)$ with $\mathrm{O}(3), \mathrm{O}\left(3^{i i}\right)$, it does not prove that the acidic hydrogen atom lies midway between the oxygen atoms. Other models might require the acidic hydrogen to be (i) distributed statically between $\mathrm{O}(2)$ and $\mathrm{O}(3)$, (ii) dynamically oscillating in a double-minimum potential, or (iii) on a 'quasi-symmetrical' position ($c f$. Schlemper, Hamilton \& La Placa, 1971). The length of the two O...O contacts, comparable, however, with those found in other compounds ($c f$. Bacon \& Curry, 1956, 1960) with supposed symmetrical hydrogen bonds, would favour hydrogen atoms not in equilibrium midway along the $\mathrm{O} \cdots \mathrm{O}$ separations, as apparently supported, at least for $\mathrm{O}(2) \cdots \mathrm{O}\left(2^{\vee}\right)$, by the broad single-peak with two lobes seen in the difference synthesis. The assumption of these lobes as hydrogen sites leads to an $\mathrm{O}(2)-\mathrm{H}$ distance of $0.92 \AA(\mathrm{H} \cdots \mathrm{O}=$

Table 3. Interatomic distances [corrected (B) and uncorrected (A) for the thermal motion] and angles $(\mathrm{O}-\mathrm{As}-\mathrm{O})$ in the AsO_{4} group
Estimated standard deviations are 0.002 and $0.003 \AA$ for As-O and $\mathrm{O}-\mathrm{O}$ distances respectively, and 0.1° for the angles•

	A	B			
As-O(1)	$1.668 \AA$	$1.674 \AA$	$O(1)-\mathrm{O}(2)$	$2.756 \AA$	109.4°
As-O(2)	1.708	1.714	$\mathrm{O}(1)-\mathrm{O}(3)$	2.760	109.8
As-O(3)	1.706	1.713	$\mathrm{O}(1)-\mathrm{O}(4)$	2.787	113.6
As-O(4)	1.663	1.670	$\mathrm{O}(2)-\mathrm{O}(3)$	2.709	105.0
			$\mathrm{O}(2)-\mathrm{O}(4)$	2.723	107.7
Average	1.686	1.693	$\mathrm{O}(3)-\mathrm{O}(4)$	2.774	110.9
			Average	2.752	

Table 4. Interatomic distances [corrected (B) and uncorrected (A) for the thermal motion] and angles $(W-\mathrm{Mg}-W)$ concerning the two independent Mg polyhedra
Estimated standard deviations are 0.002 and $0.003 \AA$ for $\mathrm{Mg}-W$ and $W-W$ distances respectively; 0.1° for the angles.

	A	B
$\mathrm{Mg}(1)-W(1)$	2.049 §	2.057 §
$\mathrm{Mg}(1)-W\left(1^{v}\right)$		
$\begin{aligned} & \mathrm{Mg}(1)-W(2) \\ & \mathrm{Mg}(1)-W\left(2^{v}\right) \end{aligned}$	2.092	2.097
$\mathrm{Mg}(1)-W(3)$	2.053	2.066
$\mathrm{Mg}(1)-W\left(3^{v}\right)$	2.053	2.066
Average	2.066	2.073
$W(1)-W(2)$	$2 \cdot 872$ A	87.8°
$W(1)^{v}-W\left(2^{v}\right)$	$2 \cdot 872$ A	87.8
$W(1)-W\left(2^{v}\right)$ $W\left(1^{v}\right)-W(2)$	2.866	$87 \cdot 6$
$W\left(1^{v}\right)-W(2)$ $W(1)-W(3)$	$2 \cdot 866$	
$W(1)-W(3)$ $W\left(1^{v}\right)-W\left(3^{v}\right)$	2.958	$92 \cdot 3$
$W\left(1^{v}\right)-W\left(3^{v}\right)$ $W(1)-W\left(3^{v}\right)$		
$\begin{aligned} & W(1)-W\left(3^{v}\right) \\ & W\left(1^{v}\right)-W(3) \end{aligned}$	$2 \cdot 960$	$92 \cdot 3$
$W(2)-W\left(3^{v}\right)$		
$W(3)-W\left(2^{v}\right)$	2.964	$91 \cdot 3$
$W(2)-W\left(2^{v}\right)$	2.931	89
$W(3)-W\left(3^{v}\right)$	$2 \cdot 864$	88.5
$W(1)-\mathrm{Mg}(1)-W\left(1^{v}\right)$		$173 \cdot 6^{\circ}$
$W(2)-\mathrm{Mg}(1)-W(3)$$W\left(2^{v}\right)-\mathrm{Mg}(1)-W\left(3^{v}\right)$		
		179.7

$\mathrm{Mg}(2)-W(4)$	$2.050 \AA$	$2.060 \AA$
$\mathrm{Mg}(2)-W\left(4^{\nu}\right)_{1}$ \}		
$\mathrm{Mg}(2)-W(5)$	2.074	2.085
$\mathrm{Mg}(2)-W\left(5^{\vee}\right),{ }^{\text {a }}$,	2.074	2.085
$\mathrm{Mg}(2)-W(6)$	2.108	2.112
Average	2.077	2.086
$W(4)-W(5)$)		
$\left.W\left(4^{v}\right)-W\left(5^{v}\right)_{1}\right\}$	$2 \cdot 867$ A	88.1
$\left.W^{W(4)}-W\left(5^{v}\right)_{1}\right\}$	$2 \cdot 968$	$92 \cdot 1$
$\left.\begin{array}{l}W\left(4^{v}\right)-W(5) \\ W(4)-W(6)\end{array}\right\}$	2.968	92.1
$\left.\begin{array}{l}W(4)-W(6) \\ W\left(4^{v}\right)-W\left(6^{v}\right)^{\prime}\end{array}\right\}$	$3 \cdot 002$	92.4
$\left.\begin{array}{l}W\left(4^{v}\right)-W\left(6^{v}\right)_{1} \\ W(4)-W\left(6^{v}\right)_{1}\end{array}\right\}$	$3 \cdot 002$	92.4
$\left.\begin{array}{l}W(4)-W\left(6^{v}\right)_{1} \\ W\left(4^{v}\right)-W(6)\end{array}\right\}$	2.873	$87 \cdot 4$
$\left.\begin{array}{l}W\left(4^{v}\right)-W(6) \\ W(5)-W(6)\end{array}\right\}$		87.4
$\left.\begin{array}{l}W(5)-W(6) \\ W\left(5^{v}\right)-W\left(6^{v}\right)_{1}\end{array}\right\}$	2.951	89.8
$\left.\begin{array}{l}W\left(5^{v}\right)-W\left(6^{v}\right)_{1} \\ W(5)-W\left(5^{v}\right)_{1}\end{array}\right\}$	2.951	93.5
$W(5)-W\left(5^{v}\right)_{1}$ $W(6)-W\left(6^{v}\right)_{\text {I }}$	3.020 2.911	$93 \cdot 5$ $87 \cdot 3$
$W(6)-W\left(6^{*}\right)_{\text {I }}$	2.911	$87 \cdot 3$
$W(4)-\mathrm{Mg}(2)-W\left(4^{v}\right)$,		179.8°
$W(6)-\mathrm{Mg}(2)-W\left(5^{v}\right)$		174.5

$1.58 \AA, \mathrm{O}-\mathrm{H} \cdots \mathrm{O}=171^{\circ}, \mathrm{As}-\mathrm{O}-\mathrm{H}=122^{\circ}$) and, on hypothesis (ii), to a separation of $0 \cdot 69 \AA$ between the two wells of a symmetrical potential function, in good agreement with theoretical computations (cf. Hamilton \& Ibers, 1968). While the near linearity of the two hydrogen bonds is in agreement with the correlation between the angle $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and the distance $\mathrm{O}-\mathrm{H}$ reported by Ferraris et al. (1972), one of the two As-O-H angles (Table 3) is even larger than that (116.8°) found in $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{AsO}_{4}\right)_{2}$ (Ferraris et al., 1972) for a symmetrical hydrogen bond. In view of all these problems a neutron-diffraction study of roesslerite is in hand.

Description of the structure

The O-As-O angles (Table 3) increase with decrease of the average value of the two corresponding As-O distances as noted in general by Baur (1970).
The two crystallographically independent Mg atoms show a fairly regular octahedral coordination (Table 4) involving oxygen atoms of the water molecules only. The longest coordination bonds belong to $W(2)$ and $W(6)$ which receive the largest ($2.17 \mathrm{v} . \mathrm{u}$.) bond strength; while $W(1), W(3), W(4)$ and $W(5)$ (bond strength $2.00 \mathrm{v} . \mathrm{u}$.) are in contact with only one Mg and are of type D (Chidambaram, Sequeira \& Sikka,

1964; Ferraris \& Franchini-Angela, 1972), $W(2)$ and $W(6)$ also accept a hydrogen bond and are of type H. Within the rough approximation of the hydrogen-atom positions, the $\mathrm{Mg}-W$ direction of $W(1), W(3), W(4)$ and $W(5)$ makes angles of $6,1,17$ and 31°, respectively, with the plane of the corresponding water molecule. Therefore $W(5)$ appears as a limiting case of type $D\left[\mathrm{M}^{2+}\right.$ along a direction making an angle not larger than 30° with the bisector of the lone-pair orbitals (Ferraris \& Franchini-Angela, 1972)]. $W(7)$ is unique among the water molecules in that it is not coordinated by Mg and that it donates two weak ($2 \cdot 860$ and $3.055 \AA$) hydrogen bonds; this may be responsible for the easy dehydration of roesslerite.

Fig. 1 is a clinographic projection, along the x axis, of the crystal structure which, with its isolated As tetrahedra and Mg octahedra, does not show strongly individualized layers or chains. Along [010] (Fig. 2) there are layers, around $y=0$ and $y=0 \cdot 5$, with the sequence As- $\mathrm{Mg}(1)-\mathrm{Mg}(1)-\mathrm{As}$ and $\mathrm{Mg}(2)$ octahedra clustered around $y=0.25$; these are connected, through the hydrogen bonds donated by $W(7)$, to the contiguous $\mathrm{Mg}(1)$ layer. The same water molecule, through its accepted hydrogen bonds, links the $\mathrm{Mg}(2)$ octahedra to form chains along [100]. The water molecules $W(4)$, $W(5)$ and $W(6)$ supply other hydrogen bonds between

Fig. 1. Unit cell of $\mathrm{MgHAsO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ (roesslerite) in clinographic projection down the x axis; water oxygen atoms are shown as double circles and magnesium atoms as small circles. In the figure are reported the hydrogen bonds donated by the water molecules (dashed-dotted lines) and by the acidic hydrogen (dotted lines) of the asymmetric unit. The circle representing $\mathrm{O}\left(2^{v}\right)$ is not shown.
Table 5. Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ involving hydrogen bonds
Estimated standard deviations are $0.06 \AA$ and 5° for distances and angles involving hydrogen atoms, $0.003 \AA$ and 0.1° for distances and angles involving oxygen atoms only.
\qquad $C E$
2.731
2.657
2.738
2.701
2.747
2.706
3.055
2.491
2.539
$\begin{array}{ll}0.81 & 1.92 \\ 0.84 & 2.23 \\ 1.246 & 1.246 \\ 1.270 & 1.270\end{array}$
$\begin{array}{ll}1.40 & 116 \\ & 124.9\end{array}$
аวя $7 \quad$ ря 109
102
101
106
109
116
1124.9
$113 \cdot 4$
contiguous layers. The linkage between different units within the complex layer containing $\mathbf{M g}(1)$ octahedra is effected by the hydrogen bonds of $W(1)$ and $W(2)$, arranged as a rhombus, and of $W(3)$; in addition, while $\mathrm{O}(2)-\mathrm{H}(15)-\mathrm{O}\left(2^{v}\right)$ is on the surface of the layer, $\mathrm{O}(3)-$ $\mathrm{H}(16)-\mathrm{O}\left(3^{\text {ii }}\right)$ lies across it connecting the two surfaces of As tetrahedra. The two O...O hydrogen bonds

Table 6. Parameters characterizing the principal directions 1, 2, 3 of the thermal vibration for As, Mg and O atoms

Root-mean-square displacements (A) and angles which the principal directions make with the $x(B), y(C)$ and $z(D)$ axes.

		$\begin{gathered} A \\ (\AA) \end{gathered}$	$\begin{gathered} B \\ \left({ }^{\circ}\right) \end{gathered}$	$\underset{\left({ }^{\circ}\right)}{C}$	$\begin{gathered} D \\ \left({ }^{\circ}\right) \end{gathered}$
As	1	$0 \cdot 109$	125	39	72
	2	$0 \cdot 119$	35	57	83
	[3	0.101	90	109	19
$\mathrm{Mg}(1)$	[1	$0 \cdot 117$	90	0	90
	$\{2$	$0 \cdot 130$	13	90	82
	3	0.110	103	90	8
$\mathrm{Mg}(2)$	$\int 1$	0.131	12	90	83
	2	0.144	102	90	7
	[3	0.107	90	0	90
$\mathrm{O}(1)$	[1	$0 \cdot 144$	74	16	92
	$\{2$	0.149	104	85	10
	[3	$0 \cdot 124$	21	105	80
O(2)	1	$0 \cdot 139$	48	113	55
	$\{2$	$0 \cdot 161$	47	48	111
	\{ 3	$0 \cdot 106$	108	51	43
O(3)	1	0.143	29	118	97
	$\{2$	0.158	92	99	10
	3	0.114	62	30	84
$\mathrm{O}(4)$	1	0.147	111	30	68
	2	0.166	21	71	86
	3	0.104	91	112	23
$W(1)$	1	$0 \cdot 143$	14	76	96
	$\{2$	0.209	104	14	88
	$\left\{\begin{array}{l}\text { 2 } \\ \end{array}\right.$	$0 \cdot 116$	90	90	6
$W(2)$		$0 \cdot 136$	88	103	15
	2	$0 \cdot 171$	58	34	83
	3	0.127	32	121	103
$W(3)$	[1	$0 \cdot 156$	130	79	37
	2	0.250	46	56	67
	3	$0 \cdot 119$	110	36	117
$W(4)$	[1	$0 \cdot 148$	67	24	85
	2	$0 \cdot 226$	113	88	18
	3	0.134	34	114	73
$W(5)$	1	$0 \cdot 174$	14	76	100
	2	0.227	80	115	29
	3	$0 \cdot 124$	100	29	63
$W(6)$	1	$0 \cdot 147$	16	103	86
	2	$0 \cdot 174$	93	67	23
	3	0.123	75	27	112
$W(7)$	1	$0 \cdot 179$	95	114	25
	2	0.209	8	97	93
	3	$0 \cdot 152$	84	26	66

[^0]: * Part of a paper presented at the 9 th International Congress of Crystallography, 26 August-7 September 1972, Kyoto, Japan. Research supported by the Italian Consiglio Nazionale delle Ricerche.

[^1]: * We are grateful to Professor Dr W. G. Perdok for measurements of the piezoelectric effect.

[^2]: * A list of $\left|F_{o}\right|$ and F_{c} values has been deposited with the National Lending Library, England, as Supplementary Publication No. SUP 30027. Copies may be obtained either through the Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1 NZ, England, or

[^3]: \dagger The labelling of the atoms is as follow: a single figure in parentheses (or no figure) denotes an atom of the asymmetric unit; a superscript, ranging from ii to viii, is included for atoms in the positions: $\bar{x}, \bar{y}, \bar{z} ; \pm\left(\frac{1}{2}+x, \frac{1}{2}+y, z\right) ; \pm\left(\bar{x}, y, \frac{1}{2}-z\right)$ and $\pm\left(\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z\right)$. Capital Roman numerals represent the following translations: I, +a; II, +c; III, - a.

